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Constellation

Constellation is a Chisel NoC RTL generator framework designed from the ground up to support integration in a
heterogeneous SoC and evaluation of highly irregular NoC architectures.

• Constellation generates packet-switched wormhole-routed networks with virtual networks and credit-based
flow control

• Constellation supports arbitrary directed graph network topologies, including irregular and hierarchical
network topologies

• Constellation includes a routing algorithm verifier and routing-table compiler, which can verify and generate
deadlock-free routing tables for arbitrary topologies

• Constellation is a protocol-independent transport layer, yet is capable of compliant deadlock-free transport of
protocols like AXI-4 and TileLink

• Constellation supports drop-in integration in Chipyard/Rocketchip SoCs

• Constellation is rigorously tested, with almost 100 different tests across as many network configurations

CONTENTS: 1
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CHAPTER

ONE

INTRODUCTION

This section will walk you through the process of generating a simple NoC configuration, generating the RTL, and
simulating the network.

1.1 Setting up Constellation

Constellation can be installed and used in three modes.

• Minimal-Standalone operation requires a minimal installation, and enables evaluation of NoCs within simple
harnesses and evaluation frameworks.

• Chiypard-Standalone runs Constellation as a Chipyard “subproject”, enabling more detailed evaluation of stan-
dalone NoCs.

• Chipyard-SoC generates a complete Chipyard SoC with a Constellation NoC

A table below summarizes the differences. For most users, Chipyard-Standalone and Chipyard-SoC are the most
useful operation modes. Minimal-Standalone should only be used in environments prohibitive to a full Chipyard
installation.

Mode Requires Capabilities
Minimal-Standalone

• Espresso
• Rocketchip

• Standalone NoC generation

CY-Standalone
• Espresso
• Chipyard

• Standalone NoC generation
• Waveform generation
• NoC visualization

CY-SoC
• Espresso
• Chipyard

• NoC integration with SoC

3
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1.1.1 Installing Rocketchip

Note: Rocketchip should only be manually installed for the Minimal-standalone operation mode.

For a Minimal-Standalone installation, Rocketchip must be manually installed as a locally-published Scala project.

git clone https://github.com/chipsalliance/rocket-chip.git
cd rocket-chip
git checkout 4fbd2f238db36b2862319e94c2f96d63bd52c98b
git submodule update --init --recursive
sbt "publishLocal"
sbt "project cde; set publishArtifact := true; publishLocal"
sbt "project rocket-macros; set publishArtifact := true; publishLocal"
sbt "project hardfloat; set publishArtifact := true; publishLocal"

1.1.2 Installing Espresso

Espresso is a logic minimizer tool. Constellation uses Espresso to generate efficient routing decode tables.

To use Constellation, espresso should be on your PATH.

git clone https://github.com/chipsalliance/espresso.git
cd espresso
mkdir -p build
cd build
cmake ../ -DBUILD_DOC=OFF -DCMAKE_INSTALL_PREFIX=/path/to/install/bin
make install

1.1.3 Installing Minimal-Standalone

To use Constellation in Minimal-Standalone mode, it is sufficient to clone the repository after installing Rocketchip
and Espresso.

git clone https://github.com/ucb-bar/constellation.git

1.1.4 Installing with Chipyard

To use Constellation in Chipyard-Standalone or Chipyard-SoC mode, follow the instructions for installing Chipyard
here. You must use Chipyard 1.8 or later.

After following those steps, run the following

make -C generators/constellation/src/main/resources/csrc/netrace netrace.o CFLAGS="-fPIC␣
→˓-O3"

4 Chapter 1. Introduction
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1.2 Running Constellation

This section will describe how to generate RTL for an example NoC configuration, and run a RTL simulation of the
NoC under a simple test harness.

In this section, we will use pre-defined example configurationes

1.2.1 Test Configs

A large set of example configurations are described in src/main/scala/test/Configs.scala. These configs are representa-
tive of a wide set of Constellation’s target design space.

These configs fall into four categories, delineated by the prefix of the Config name.

Prefix ChiselTest Pre-
fix

Generates. . . Tests. . .

TestConfig NoCTest
• NoC verilog
• chisel random test harness

Functional correctness

TLTestConfig NoCTestTL
• NoC verilog
• TileLink protocol adapters
• TileLink transport harness

Functional correctness for TL
transport

AXI4TestConfigNoCTestAXI4
• NoC verilog
• AXI4 protocol adapters
• AXI4 transport harness

Functional correctness for
AXI4 transport

1.2.2 Minimal-Standalone Testing

In minimal-standalone mode, predefined testing configurations can be generated and simulated. The list of testing
configurations is described in src/test/scala/constellation/NocTests.scala. Each Test configuration corresponds to a
NoC configuration.

cd constellation
CONSTELLATION_STANDALONE=1 sbt "testOnly constellation.NoCTest00"

When running the above command, the NoC verilog will be generated in test_run_dir.

cd test_run_dir
cd NoC_should_pass_test_with_config_constellationtestTestConfig00
cat NoCChiselTester.sv

1.2. Running Constellation 5

https://github.com/ucb-bar/constellation/blob/master/src/main/scala/test/Configs.scala
https://github.com/ucb-bar/constellation/blob/master/src/test/scala/constellation/NocTests.scala


Constellation

1.2.3 Chipyard-Standalone Testing

The test configurations can also be run in Chipyard-Standalone mode.

cd chipyard/sims/vcs
make SUB_PROJECT=constellation BINARY=none CONFIG=TestConfig00 run-binary-debug

After running the above command, the generated verilog will be in generated-src.

cd generated-src
cd constellation.test.TestHarness.TestConfig00
cat constellation.test.TestHarness.TestConfig00.top.v

A visualization of the NoC can also be generated

NOC_PATH=$(pwd)/constellation.test.TestHarness.TestConfig00.test.noc.
cd ~/chipyard/generators/constellation/scripts
./vis.py $NOC_PATH

6 Chapter 1. Introduction



CHAPTER

TWO

NOC CONFIGURATION

Constellation divides the NoC specification into three orthogonal concerns.

• Physical specification describes the topology and microarchitecture of the NoC

• Flow specification describes what flows the network might expect

• Routing specification describes how flows traverse the physical resources of the NoC

The total specification of the NoC is captured in the constellation.noc.NoCParams case class. The total class is depicted
below. Please see the subsections for more details.

case class NoCParams(
// Physical specifications
topology: PhysicalTopology = UnidirectionalLine(1),
channelParamGen: (Int, Int) => UserChannelParams = (_, _) => UserChannelParams(),
ingresses: Seq[UserIngressParams] = Nil,
egresses: Seq[UserEgressParams] = Nil,
routerParams: Int => UserRouterParams = (i: Int) => UserRouterParams(),

// Flow specification
// (blocker, blockee) => bool
// If true, then blocker must be able to proceed when blockee is blocked
vNetBlocking: (Int, Int) => Boolean = (_, _) => true,
flows: Seq[FlowParams] = Nil,

// Routing specification
routingRelation: PhysicalTopology => RoutingRelation = AllLegalRouting(),

// other
nocName: String = "test",
skipValidationChecks: Boolean = false,
hasCtrl: Boolean = false,

)

A specification is constructed as an instance of a NoCParams case class. Examples of specifications can be seen in
src/main/scala/test/Configs.scala.

7
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2.1 Physical Specification

The NoC’s physical specifcation is itself broken down into five components.

topology: PhysicalTopology = UnidirectionalLine(1),
channelParamGen: (Int, Int) => UserChannelParams = (_, _) => UserChannelParams(),
ingresses: Seq[UserIngressParams] = Nil,
egresses: Seq[UserEgressParams] = Nil,
routerParams: Int => UserRouterParams = (i: Int) => UserRouterParams(),

2.1.1 Topology

A PhysicalTopology is a case class which describes a directed graph, where nodes represent routers, and edges
represent unidirectional channels.

trait PhysicalTopology {
// Number of nodes in this physical topology
val nNodes: Int

/** Method that describes the particular topology represented by the concrete
* class. Returns true if the two nodes SRC and DST can be connected via a
* directed channel in this topology and false if they cannot.
*
* @param src source point
* @param dst destination point
*/

def topo(src: Int, dst: Int): Boolean

/** Plotter from TopologyPlotters.scala.
* Helps construct diagram of a concrete topology. */

val plotter: PhysicalTopologyPlotter
}

To see how to extend his trait, consider the UnidirectionalTorus1D topology.

/** An n-node network shaped like a torus, with directed channels */
case class UnidirectionalTorus1D(n: Int) extends Torus1DLikeTopology {
val nNodes = n
def topo(src: Int, dest: Int) = (dest - src + nNodes) % nNodes == 1

}

The current list of included base topologies is described below. User can always define their own topology.

8 Chapter 2. NoC Configuration
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Topology Parameters Diagram
UnidirectionalLine nNodes: Number of nodes
BidirectionalLine nNodes: Number of nodes
UnidirectionalTorus1D nNodes: Number of nodes
BidirectionalTorus1D nNodes: Number of nodes
Butterfly

kAry: Degree of routers
nFly: Number of stages

BidirectionalTree

height: Height of tree
dAry : Degree of routers

Mesh2D

nX: Extent in X-dimension
nY: Extent in Y-dimension

UnidirectionalTorus2D

nX: Extent in X-dimension
nY: Extent in Y-dimension

BidirectionalTorus2D

nX: Extent in X-dimension
nY: Extent in Y-dimension

Additionally, two hierarchical compositional topology generators are provided: TerminalRouter and
HierarchicalTopology.

2.1.1.1 Terminal Router Topologies

The TerminalRouter topology class “wraps” a base topology with a layer of terminal router nodes, which the ingresses
and egresses tie to. This reduces the radix of critical routers in the network. This topology class can wrap an arbitrary
base topology (including custom topologies).

For example, consider a network where the base topology is a bidirectional line. Wrapping the base
BidirectionalLine topology class in the TerminalRouter class “lifts” the terminal points into separate nodes
(purple), while preserving the existing topology and routing behavior on the underlying network routers.

Topology Diagram
BidirectionalLine(4)
TerminalRouter(BidirectionalLine(4))

Note: The TerminalRouter topology must be used with the TerminalRouting routing relation wrapper

2.1. Physical Specification 9
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2.1.1.2 Hierarchical Topologies

The HierarchicalTopology class joins a collection of child sub-topologies using a base topology. A
HierarchicalSubTopology describes a child sub-topology, as well as the connection to the base topology.

In the first example below, note how the first hierarchical child topology describes a channel between the 0th node on
the base topology, and what would be node 2 on the child topology. Here the green nodes are from the base topology,
while the blue nodes are from the child topologies.

Note: The TerminalRouter can be combined with HierarchicalTopology, as shown in the second example

Topology Diagram

HierarchicalTopology(
base=UnidirectionalTorus1D(4),
children=Seq(
HierarchicalSubTopology(0,2,

→˓BidirectionalLine(5)),
HierarchicalSubTopology(2,1,

→˓BidirectionalLine(3))
)

)

TerminalRouter(HierarchicalTopology(
base=UnidirectionalTorus1D(4),
children=Seq(
HierarchicalSubTopology(0,2,

→˓BidirectionalLine(5)),
HierarchicalSubTopology(2,1,

→˓BidirectionalLine(3))
)

))

Note: The HierarchicalTopology topology must be used with the HierarchicalRouting routing relation wrap-
per

2.1.2 Channels

channelParamGen is a function which determines the channel parameters for each directed channel in the network.
For every edge dictated by the PhysicalTopology, this function is called to determine the channel parameters for that
edge.

This function can return a different set of parameters for each edge.

case class UserChannelParams(
virtualChannelParams: Seq[UserVirtualChannelParams] =
Seq(UserVirtualChannelParams()),

channelGen: Parameters => ChannelOutwardNode => ChannelOutwardNode =
(continues on next page)

10 Chapter 2. NoC Configuration
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(continued from previous page)

p => u => u,
crossingType: ClockCrossingType = NoCrossing,
useOutputQueues: Boolean = true,
srcSpeedup: Int = 1,
destSpeedup: Int = 1

) {
val nVirtualChannels = virtualChannelParams.size

}

case class UserVirtualChannelParams(
bufferSize: Int = 1

)

2.1.2.1 Virtual Channels

The virtualChannelParams field contains a list of UserVirtualChannelParams objects, where the each element
represents one virtual channel, and the UserVirtualChannelParams object holds the number of buffer entries for
that virtual channel.

2.1.2.2 Channel Generation

Currently, the channelGen field is only used to specify adding additional pipeline buffers in a channel.

For example, the following segment sets a two-deep buffer on the channel.

channelGen = (u) => {
implicit val p: Parameters = u
ChannelBuffer(2) := _

}

Note: In the future more functionality can be added through this interface.

2.1.2.3 Speedup

srcSpeedup indicates the number of flits that may enter a channel in a cycle. For srcSpeedup > 1, the generator will
effectively increase the input bandwidth of the channel.

destSpeedup indicates the number of flits that may exit a channel in a cycle. Increasing this pressures the routing
resources and switch of the destination router.

Note: Setting srcSpeedup > destSpeedup is an unusual design point.

2.1. Physical Specification 11
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2.1.2.4 Clock Crossings

Currently unsupported. One day this will allow auto insertion of clock crossings between routers of the network on
different clock domains.

2.1.3 Terminals

Constellation decouples the parameterization of ingress and egress channels from the base routing topology to allow for
more flexibility in the described networks. Any router in the network can support many or no ingress and egress chan-
nels. The UserIngressParams and UserEgressParams case classes specify where the ingress and egress terminals
are.

ingresses=Seq(UserIngressParams(0),
UserIngressParams(1),
UserIngressParams(1)),

egresses=Seq(UserEgressParams(0),
UserEgressParams(3),
UserEgressParams(3))

Explicit payload widths should also be specified. Usually, the payload width specified here would match the payload
width of the router the terminal connects to.

If the terminal payload width is a multiple or factor of the router payload width, Constellation will auto-generate width
converters to either further segment or merge flits.

ingresses = Seq(UserIngressParams(0),␣
→˓payloadBits=128)),
egresses = Seq( UserEgressParams(0),␣
→˓payloadBits=128)),
routers = (i) =>␣
→˓UserRouterParams(payloadBits=64),

Note: The common use case for payloadWidth is to set the same width for all terminals.

Warning: Be wary of using payload width converters liberally. For example, a 3-flit packet of 64 bits per flit, if
up-scaled to a 2-flit packet of 128 bits per flit, will be down-scaled into a 4-flit packet of 64 bits per flit.

12 Chapter 2. NoC Configuration
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2.1.4 Routers

Constellation’s router generators have several microarchitectural configuration knobs. The standard router microarchi-
tecture follows the standard design pattern. A brief description of the operation of a router follows:

1. The head flit of the packet queries the router’s RouteComputer to determine the next set candidate virtual chan-
nels it may allocate. This is the RC stage.

2. The head flit of the packet queries the router’s VirtualChannelAllocator to allocate a virtual channel from
the candidate set of next virtual channels, in the VA stage

3. Flits ask the SwitchAllocator for access to the crossbar switch in the router in the SA stage. This stage also
checks that the next virtual channel has an empty buffer slot to accomodate this flit.

4. A flit traverses the crossbar switch in the ST stage.

Flow-control is credit based. Matching InputUnit and OutputUnit pairs exchange credits over a separate narrow
channel to indicate the availability of buffer entries. A flit departing a InputUnit sends a credit backwards to the
OutputUnit on its source router.

Note: Constellation treats terminal Ingress and Egress points as special instances of InputUnits and OutputUnits.

Fig. 1: The standard router micro-architecture

The router field of the NoCParams case class returns per-router parameters, enabling heterogeneous designs with
different router configurations.

2.1.4.1 Pipelining

The standard pipeline microarchitecture is a 4-hop router, with RC, VA, SA, and ST on separate stages. Two flags exist
in the base router generator to reduce the hop count.

• combineRCVA performs route-compute and virtual-channel-allocation in the same cycle. Routers which imple-
ment near-trivial routing policies may benefit from this setting.

• combineSAST performs switch allocation and switch traversal in the same cycle. This is useful for low-radix
routers.

combineRCVA = false

combineSAST = false

combineRCVA = true

combineSAST = true

In the base microarchitecture, stalls can occur due to a delay in reallocating an output virtual channel to a new packet.
In the left diagram below, observe that no flit traverses the switch in cycle 4, due to the delay for the virtual channel to
be freed in cycle 3.

When coupleSAVA is enabled, the freed virtual channel is immediately made available on the same cycle. However
coupleSAVA can introduce long combinational paths on high-radix routers.

2.1. Physical Specification 13
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coupleSAVA = false coupleSAVA = true

2.1.4.2 Payload Width

A router can specify its internal payloadWidth. When routers with different payload widths are connected by a
channel, Constellation will autogenerate width-adapters on the channels if the widths are multiples of each other.

NoCParams(
topology = Mesh2D(2, 2)
routerParams = (i) =>␣

→˓UserRouterParams(payloadWidth =
if (i == 1 or i == 2) 128 else 64),

)

2.1.4.3 Virtual Channel Allocator

The has of the Virtual Channel Allocator has significant implications on the resulting performance of the NoC. Cur-
rently, there are two categories of allocators implemented

• Single VC allocators allocate only a single VC per cycle. These are useful in networks where most packets are
multi-flit, as only the head flit needs to query the allocator

• Multi VC allocators attempt to allocate multiple VCs per cycle.

The following allocator implementations are provided.

• PIMMultiVCAllocator implements parallel-iterative-matching for a separable allocator

• ISLIPMultiVCAllocator implements the ISLIP policy for a separable allocator

• RotatingSingleVCAllocator rotates across incoming requests

• PrioritizingSingleVCAllocator prioritizes certain VCs over others, according to the priorities given by
the routing relation

2.2 Flow Specification

The NoC’s flow specification consits of two components.

// (blocker, blockee) => bool
// If true, then blocker must be able to proceed when blockee is blocked
vNetBlocking: (Int, Int) => Boolean = (_, _) => true,
flows: Seq[FlowParams] = Nil,

14 Chapter 2. NoC Configuration
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2.2.1 Flows

The flows field of NoCParams is a list of FlowParams case classes, where each flow uniquely identifies its source
ingress terminal, destination egress terminal, and the virtual subnetwork identifier.

The flows parameter is motivated by the observation that the actually supported traffic patterns in a NoC is a subset
of all possible ingress-egress pairs. Constellation can optimize the generated RTL for only the flows the network is
expected to handle at runtime.

case class FlowParams(
ingressId: Int,
egressId: Int,
vNetId: Int,
fifo: Boolean = false

)

The ingressId and egressId fields index the specified ingresses and egresses of the NoC. That is, the ingress/egress
indices decouple the flow specification from the underlying physical implementation of the network

The vNetId field can be used to specify a virtual subnetwork identifier to the flow. Virtual subnetworks are used to
delineate between different channels of a actual messaging protocol, and is necessary for avoiding protocol-deadlock.

2.2.2 Virtual Subnetworks

The vNetBlocking function indicates which virtual subnetworks must make forwards progress while some other vir-
tual subnetwork is blocked. If vNetBlocking(x, y) == true, then packets from subnetwork x must make forwards
progress while packets of subnetwork y are stalled.

2.3 Routing Configuration

In Constellation, the desired routing relation is specified by the user as an abstract Scala function, instead of an RTL
implementation of a routing table. Constellation will use this function to “compile” a hardware implementation of the
desired routing algorithm.

abstract class RoutingRelation(topo: PhysicalTopology) {
// Child classes must implement these
def rel (srcC: ChannelRoutingInfo,

nxtC: ChannelRoutingInfo,
flow: FlowRoutingInfo): Boolean

def isEscape (c: ChannelRoutingInfo,
vNetId: Int): Boolean = true

def getNPrios (src: ChannelRoutingInfo): Int = 1

def getPrio (srcC: ChannelRoutingInfo,
nxtC: ChannelRoutingInfo,
flow: FlowRoutingInfo): Int = 0

2.3. Routing Configuration 15
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2.3.1 Channel Identifier

The ChannelRoutingInfo case class uniquely identifies a virtual channel, ingress channel, or egress channel in the
system.

case class ChannelRoutingInfo(
src: Int,
dst: Int,
vc: Int,
n_vc: Int

) {

The fields of this case class are:

• src is the source physical node of the channel. If this is an ingress channel, this value is -1.

• dst is the destination physical node of the channel. If this is an egress channel, this value is -1.

• vc is the virtual channel index within the channel.

• n_vc is the number of available virtual channels in this physical channel.

Consider a toy network depicted below with bidirectional physical channels, and two virtual channels on each physical
channel. The list of all possible ChannelRoutingInfo in this network is shown

// Ingresses
ChannelRoutingInfo(src=-1, dst=0, vc=0, n_
→˓vc=1)
ChannelRoutingInfo(src=-1, dst=1, vc=0, n_
→˓vc=1)

// Egresses
ChannelRoutingInfo(src=0, dst=0, vc=0, n_
→˓vc=1)
ChannelRoutingInfo(src=0, dst=3, vc=0, n_
→˓vc=1)

// Routing channels
ChannelRoutingInfo(src=0, dst=1, vc=0, n_
→˓vc=2)
ChannelRoutingInfo(src=0, dst=1, vc=1, n_
→˓vc=2)
ChannelRoutingInfo(src=1, dst=0, vc=0, n_
→˓vc=2)
ChannelRoutingInfo(src=1, dst=0, vc=1, n_
→˓vc=2)
...

Note: In the current implementations, packets arriving at the egress physical node are always directed to the egress.
Thus, ChannelRoutingInfo for the egress channels are not used. Additionally, this limitation prevents the imple-
mentation of deflection routing algorithms
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2.3.2 Flow Identifier

The FlowRoutingInfo case class uniquely identifies a potential flow, or packet that might traverse the NoC.

case class FlowRoutingInfo(
ingressId: Int,
egressId: Int,
vNetId: Int,
ingressNode: Int,
ingressNodeId: Int,
egressNode: Int,
egressNodeId: Int,
fifo: Boolean

) {

The fields of this case class are:

• ingressId is the ingress index of the flow.

• ingressNode is the physical node of the ingress of this flow.

• ingressNodeId is the index of the ingress within all ingresses at the physical node.

• egressId is the egress index of the flow

• egressNode is the physical node of the egress of this flow

• egressNodeId is the physical node of the egress within all egresses at the physical node

• vNetId is the virtual subnetwork identifier of this flow

As an example, consider the same topology with two virtual subnetworks, for odd and even ingress and egresses.

egressId
ingressNodeId | egressNode

ingressNode | | | ␣
→˓egressNodeId

ingressId | | | | | vNetId
| | | | | | |

FlowRoutingInfo(0, 0, 0, 0, 0, 0, 0)
FlowRoutingInfo(0, 0, 0, 2, 3, 1, 0)
FlowRoutingInfo(0, 0, 0, 2, 3, 1, 0)
FlowRoutingInfo(2, 1, 1, 0, 0, 0, 0)
FlowRoutingInfo(2, 1, 1, 2, 3, 1, 0)
FlowRoutingInfo(2, 1, 1, 2, 3, 1, 0)

FlowRoutingInfo(1, 1, 1, 1, 3, 1, 1)
FlowRoutingInfo(1, 1, 1, 1, 3, 1, 1)
FlowRoutingInfo(1, 1, 1, 1, 3, 1, 1)

2.3. Routing Configuration 17
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2.3.3 Base Routing Relations

Numerous builtin routing relations are provided. These provide deadlock-free routing for the included topology gener-
ators.

RoutingRelation Description
AllLegalRouting Allows any packet to transition to any VC. Only useful for trivial networks
UnidirectionalLineRoutingRouting for a UnidirectionalLine topology.
BidirectionalLineRoutingRouting for a BidirectionalLine topology.
UnidirectionalTorus1DDatelineRoutingRouting for a UnidirectionalTorus1D topology. Uses a dateline to avoid deadlock.

Requires at least 2 VCs per physical channel
BidirectionalTorus1DRandomRoutingRouting for a BidirectionalTorus1D topology. Uses a dateline to avoid deadlock.

Packets randomly choose a direction at ingress. Requires at least 2 VCs per physical
channel

BidirectionalTorus1DShortestRoutingRouting for a BidirectionalTorus1D topology. Uses a dateline to avoid deadlock.
Packets choose direction at ingress which minimizes hops. Requires at least 2 VCs per
physical channel.

ButterflyRouting Routing for a Butterfly topology with arbitrary kAry and nFly.
BidirectionalTreeRoutingRouting for a BidirectionalTree topology.
Mesh2DDimensionOrderedRoutingRouting for a Mesh2D topology. Routes in one dimension first, than the other to prevent

deadlock
Mesh2DWestFirstRoutingRouting for a Mesh2D topology. Routes in the westward dimension first to prevent

deadlock
MEsh2DNorthLastRoutingRouting for a Mesh2D topology. Routes in the northward dimension last to prevent

deadlock.
Mesh2DEscapeRouting Escape-channel based adaptive minimal routing for Mesh2D topology. Escape channel

routes using dimension ordered routing, while other channels route any minimal path.
DimensionOrderedUnidirectionalTorus2DRoutingRouting for the UnidirectionalTorus2D topology. Routes in the X dimension first.
DimensionOrderedBidirectionalTorus2DRoutingRouting for the BidirectioanlTorus2D topology. Routes in the X dimension first.

2.3.4 Compositional Routing Relations

Several compositional routing relation classes are provided.

2.3.4.1 Escape Channel Routing

Escape-channel based routing can be used to build deadlock-free adaptive routing policies. When the routing policy
on the escape virtual channels is deadlock-free, and packets in the escape channels cannot route on the non-escape
virtual channels, the resulting policy is deadlock-free, even if circular dependencies exist among the non-escape virtual
channels.

The EscapeChannelRouting class has three parameters:

• escapeRouter: the base deadlock-free routing algorithm that will be used on the escape VCs.

• normalRouter: the routing algorithm for all non-escape VCs.

• nEscapeChannels: the number of VCs to dedicate for escape channels on each physical channel

For example, a Mesh2DEscapeRouting algorithm with two escape channels using dimension-orderd routing can be
described as:
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EscapeChannelRouting(
escapeRouter = Mesh2DDimensionOrderedRouting(),
normalRouter = Mesh2DMinimalRouting(),
nEscapeChannels = 2

)

2.3.4.2 Terminal Router Routing

TerminalRouter topologies require the TerminalRouterRouting routing relation. The baseRouting field is the
base routing relation used to route among the non-terminal routers in the topology.

topolog =
TerminalRouter(BidirectionalLine(4))

routing =
TerminalRouterRouting(BidirectionalLineRouting())

2.3.4.3 Hierarchical Topology Routing

Hierarchical toplogies require the HierarchicalRouting routing relation. The baseRouting field is the routing
relation for the base topology, while the childRouting field is alist of routing relations for the sub-topologies.

Hierarchical routing can be composed with terminal router routing.

2.3. Routing Configuration 19



Constellation

topology = HierarchicalTopology(
base = UnidirectionalTorus1D(4),
children = Seq(
HierarchicalSubTopology(0,2,

→˓BidirectionalLine(5)),
HierarchicalSubTopology(2,1,

→˓BidirectionalLine(3))
)

)
routing = HierarchicalRouting(
baseRouting =␣

→˓UnidirectionalTorus1DDatelineRouting(),
childRouting = Seq(
BidirectionalLineRouting(),
BidirectionalLineRouting()

)
)

topology =␣
→˓TerminalRouter(HierarchicalTopology(
base = UnidirectionalTorus1D(4),
children = Seq(
HierarchicalSubTopology(0,2,

→˓BidirectionalLine(5)),
HierarchicalSubTopology(2,1,

→˓BidirectionalLine(3))
)

))
routing =␣
→˓TerminalRouter(HierarchicalRouting(
baseRouting =␣

→˓UnidirectionalTorus1DDatelineRouting(),
childRouting = Seq(
BidirectionalLineRouting(),
BidirectionalLineRouting()

)
)

2.3.5 Virtual Subnetwork Routing Relations

A special class of compositional routing relations can enforce forwards progress on networks with multiple virtual
subnetworks.

• The NonblockingVirtualSubnetworksRouting policy guarantees all virtual subnetworks on the network
can always make forwards progress by dedicating some number of virtual channels to each subnetwork.

• The BlockingVirtualSubnetworksRouting policy guarantees that lower-indexed virtual subnetworks can
always make forwards progress while higher-indexed virtual subnetworks are blocked.
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THREE

PROTOCOL SUPPORT

Constellation supports an interface to automatically wrap a multi-channel communication protocol on top of the NoC.
This section describes the abstract interface for layering any potential protocol onto the NoC, as well as the implemen-
tations which provide AXI-4 and TileLink compliant interconnects.

3.1 Abstract Protocol Interface

To layer a protocol on top of the NoC, an instance of a case class extending ProtocolParams must be constructed.

trait ProtocolParams {
val minPayloadWidth: Int
val ingressNodes: Seq[Int]
val egressNodes: Seq[Int]
val nVirtualNetworks: Int
val vNetBlocking: (Int, Int) => Boolean
val flows: Seq[FlowParams]
def genIO()(implicit p: Parameters): Data
def interface(
terminals: NoCTerminalIO,
ingressOffset: Int,
egressOffset: Int,
protocol: Data)(implicit p: Parameters)

}

The required fields of ProtocolParams must be provided as follows:

• minPayloadWidth is the required minimum payload width for flits to transport this protocol. It is the minimum
payload width at the ingress and egress terminals.

• ingressNodes is an ordered list of physical node destination for all ingress terminals

• egressNodes is an ordered list of physical node sources for all egress terminals

• nVirtualNetworks is the number of virtual subnets in this protocol, often this is the number of protocol chan-
nels.

• vNetBlocking describes the blocking/nonblocking relationships between virtual subnetworks in this protocol

• flows is a list of possible flows for the protocol

• genIO returns the protocol-level IO for the entire interconnect

• interface provides the interface for the NoC through terminals: NoCTerminalIO and the interface for
the protocol through protocol: Data. This function should instantiate the user-defined protocol adapters to
connect the two interfaces.
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3.2 Standalone Protocol NoC

A NoC with protocol support can be elaborated in Chisel using the ProtocolNoC generator. The ProtocolNoCParams
case class parameterizes both the network (through nocParams), as well as the protocol interface (though a list of
ProtocolParams.

case class ProtocolNoCParams(
nocParams: NoCParams,
protocolParams: Seq[ProtocolParams]

)
class ProtocolNoC(params: ProtocolNoCParams)(implicit p: Parameters) extends Module {
val io = IO(new Bundle {
val ctrl = if (params.nocParams.hasCtrl) Vec(params.nocParams.topology.nNodes, new␣

→˓RouterCtrlBundle) else Nil
val protocol = MixedVec(params.protocolParams.map { u => u.genIO() })

})

Note: Multiple protocols can be supported on a shared interconnect by passing multiple ProtocolParams to
protocolParams

Note: Harnesses for testing standalone non-diplomatic protocol-capable NoCs are currently not provided. At the
moment, Diplomatic integration is recommended.

3.2.1 TileLink Protocol Params

The TileLinkProtocolParams case class describes an instance of ProtocolParams for TileLink-C. edgesIn
and edgesOut are ordered list of inwards and outwards TileLink edges (from masters and slaves, respectively).
edgeInNodes and edgeOutNodes map the masters and slaves to physical node indices. The definition of the TLEdge
parameter class can be found in Rocketchip.

case class TileLinkProtocolParams(
edgesIn: Seq[TLEdge],
edgesOut: Seq[TLEdge],
edgeInNodes: Seq[Int],
edgeOutNodes: Seq[Int]

) extends ProtocolParams with TLFieldHelper {

Note: TL-C is a superset of TL-UL and TL-UH, so this implementation supports all potential TileLink implementa-
tions.
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3.2.2 AXI-4 Protocol Params

The AXI4ProtocolParams case class describes an instance of ProtocolParams for AXI4. edgesIn and edgesOut
are ordered list of inwards and outwards AXI-4 edges (from masters and slaves, respectively). edgeInNodes and
edgeOutNodes map the masters and slaves to physical node indices. The definition of the AXI4EdgeParameters
class can be found in Rocketchip.

case class AXI4ProtocolParams(
edgesIn: Seq[AXI4EdgeParameters],
edgesOut: Seq[AXI4EdgeParameters],
edgeInNodes: Seq[Int],
edgeOutNodes: Seq[Int],
awQueueDepth: Int

) extends ProtocolParams {

3.3 Diplomatic Protocol NoC

The common approach for generating interconnects within a Chipyard/Rocketchip-based SoC is to use the Diplo-
matic wrapper for a protocol-capable interconnet. Diplomacy’s parameter negotiation will automatically construct
a ProtocolParams case class to construct the TileLinkProtocolParams or AXI4ProtocolParams case classes
from the Diplomatic graph.

These modules can replace existing TLXbar() and AXI4Xbar() Diplomatic modules in any Chipyard/Rocketchip
design.

• nocParams: NoCParams describes the physical topology and routing relation of the network

• nodeMappings: DiplmaticNetworkNodeMapping contains mappings from String to a Int to map Diplo-
matic edges to physical node identifiers

case class AXI4NoCParams(
nodeMappings: DiplomaticNetworkNodeMapping,
nocParams: NoCParams,
awQueueDepth: Int = 2

)
class AXI4NoC(params: AXI4NoCParams, name: String = "test")(implicit p: Parameters)␣
→˓extends LazyModule {

case class TLNoCParams(
nodeMappings: DiplomaticNetworkNodeMapping,
nocParams: NoCParams = NoCParams()

)
class TLNoC(params: TLNoCParams, name: String = "test")(implicit p: Parameters) extends␣
→˓TLNoCLike {

case class DiplomaticNetworkNodeMapping(
inNodeMapping: ListMap[String, Int] = ListMap[String, Int](),
outNodeMapping: ListMap[String, Int] = ListMap[String, Int]()

) {
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CHAPTER

FOUR

CHIPYARD SOC INTEGRATION

Constellation NoCs can replace any TileLink crossbar in a Chipyard/Rocketchip SoC. The most common use case is
for generating the interconnect for the SystemBus or the MemoryBus.

Examples of NoC integration can be found in the NoCConfigs.scala file in Chipyard, in the MultiNoCConfig.

4.1 Global Shared Interconnect

While the default approach for integrating NoCs generates an independent network for each logical interconnect (i.e.
the SystemBus and MemoryBus are wholly independent strucutres), Constellation also supports a shared global inter-
connect that is still deadlock-free. Configs pursuing this style of integration should set the GlobalNoCParams field
with constellation.soc.WithGlobalNoC.

An example of a global shared NoC config is the SharedNoCConfig in NoCConfigs.scala in Chipyard.
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CHAPTER

FIVE

EVALUATION FRAMEWORK

Constellation includes a lightweight C++ evaluation framework, designed to support future advanced traffic models.
Currently, the framework supports measuring per-flow latency and bandwidth using two traffic models.

• An injection-rate based model, with per-flow injection rates

• A trace-driven model, which loads Netrace trace files

5.1 Running a Simple Evaluation

Traffic evaluations are best run in Chipyard-standalone mode.

cd chipyard/sims/vcs
make SUB_PROJECT=constellation BINARY=none CONFIG=EvalTestConfig00 MODEL=EvalHarness run-
→˓binary-debug

A generated noceval.cfg file will be generated in the generated-src directory. Copy this file elsewhere and modify
it to adjust the simulation parameters. The important fields of this config file are:

• warmup: Number of cycles to spend in the warmup phase, to bring the network to steady-state

• measurement: Number of cycles after warmup in which throughput is measured

• drain: Number of cycles after measurement to wait for the network to drain. If the network does
not drain in this many cycles, an assertion is fired

• flits_per_packet: Packet size

• required_XXX: Required throughput, median latency, max latency. IF measurement exceeds these,
an assertion fires.

• netrace_enable: Use Netrace trace file as traffic model

• netrace_trace: Path to Netrace trace file

• netrace_region: Netrace region to begin trace replay at

• flow x y z: Specifies injection rate z for flow from ingress index x to egress index y

After modifying a noceval.cfg flag, the simulation can be rerun with:

cd chipyard/sims/vcs
make SUB_PROJECT=constellation BINARY=none CONFIG=EvalTestConfig00 MODEL=EvalHarness run-
→˓binary-debug EXTRA_SIM_FLAGS="+eval_params=path/to/noceval.cfg"
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SIX

INDICES AND TABLES

• genindex

• modindex

• search
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